This article is part of "CXO AI Playbook" — straight talk from business leaders on how they're testing and using AI.
The future of software-development jobs is changing rapidly as more companies adopt AI tools that can accelerate the coding process and close experience gaps between junior- and senior-level developers.
Increased AI adoption could be part of the tech industry's "white-collar recession," which has seen slumps in hiring and recruitment over the past year. Yet integrating AI into workflows can offer developers the tools to focus on creative problem-solving and building new features.
On November 14, Business Insider convened a roundtable of software developers as part of our "CXO AI Playbook" series to learn how artificial intelligence was changing their jobs and careers. The conversation was moderated by Julia Hood and Jean Paik from BI's Special Projects team.
These developers discussed the shifts in their day-to-day tasks, which skills people would need to stay competitive in the industry, and how they navigate the expectations of stakeholders who want to stay on the cutting edge of this new technology.
Panelists said AI has boosted their productivity by helping them write and debug code, which has freed up their time for higher-order problems, such as designing software and devising integration strategies.
However, they emphasized that some of the basics of software engineering — learning programming languages, scaling models, and handling large-scale data — would remain important.
The roundtable participants also said developers could provide critical insight into challenges around AI ethics and governance.
The roundtable participants were:
The following discussion was edited for length and clarity.
Julia Hood: What has changed in your role since the popularization of gen AI?
Shruti Kapoor: One of the big things I've noticed with writing code is how open companies have become to AI tools like Cursor and Copilot and how integrated they've become into the software-development cycle. It's no longer considered a no-no to use AI tools like ChatGPT. I think two years ago when ChatGPT came out, it was a big concern that you should not be putting your code out there. But now companies have kind of embraced that within the software-development cycle.
Kesha Williams: In my role, it's been trying to help my team rethink their roles and not see AI as a threat but more as a partner that can help boost productivity, and encouraging my team to make use of some of the new embedded AI and gen-AI tools. Really helping my team upskill and putting learning paths in place so that people can embrace AI and not be afraid of it. More of the junior-level developers are really afraid about AI replacing them.
Kapoor: I think one of the biggest things I've noticed in the last two to three years is the rise of a job title called "AI engineer," which did not exist before, and it's kind of in between an ML engineer and a traditional software engineer. I'm starting to see more and more companies where AI engineer is one of the top-paying jobs available for software engineers. One of the cool things about this job is that you don't need an ML-engineering background, which means it's accessible to a lot more people.
Hood: What are the concerns and obstacles you have as AI gains momentum? How do you manage the expectations of nontech stakeholders in the organization who want to stay on the leading edge?
Mithal: One is helping them understand the trade-offs. It could be security versus innovation or speed versus accuracy. The second is metrics. Is it actually improving the efficiency? How much is the acceptance rate for our given product? Communicating all those to the stakeholders gives them an idea of whether the product they're using is making an impact or if it's actually helping the team become more productive.